Introduction
The use of RF pulses to detect objects in three dimensions started in the early 1900s. Initial applications focused on military requirements, specifically detection of ships and aircraft. Today, radar is used in a wide range of military, commercial and research applications including tracking aircraft, monitoring the weather and detecting the speed of anything from a tennis ball to a car. The basic principle of radar remains unchanged, with a short burst of RF energy being transmitted and then a receiver waiting to detect any of that energy that has bounced back from a distant object.
Once installed, many radars are expected to run uninterrupted for decades of service. To ensure that their performance does not degrade over time, it is necessary to measure their key performance metrics at regular intervals. One of the prime areas of performance that is monitored is the characteristics of the transmitted RF pulses. The IEEE has published specifications for how the critical parameters of pulses should be measured, “IEEE Std 181-2011, Standard for Transitions, Pulses and Related Waveforms”. This standard specifies precisely what parameters need to be measured and how those measurements should be calculated.
The Field Master Pro MS2090A with option 0421 pulse analyzer displays the full pulse characteristics and provides detailed numeric results for all the common radar parameters. This application note highlights its use in field measurements of airport surveillance radar and weather radar.
Learn more about Anritsu's Field Master Pro™ MS2090A